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A computationally efficient algorithm for rotor design optimization of Synchronous Reluctance Machines (SynRMs) has been 

proposed.  A mixed-integer design space of rotor pole numbers and single barrier rotor geometry was considered to develop a 

generalizable algorithm for carrying out multi-objective design and optimization of SynRMs.  By using 2D FEA time-stepping 

simulations, two objective values per sampled design were generated: average torque and torque ripple. Non-linear regression analysis 

using the Bayesian Regularization Backpropagation Neural Network (BRNN) was used to train surrogate models for the two design 

objectives.  A convergence criterion of 20 neurons for the hidden layer size was observed per objective.  The resulting Response Surface 

(RS) models were then used to calculate a Pareto front in the objective space through Genetic Algorithm (GA) optimization. 

 
Index Terms— AC motors, finite element analysis, genetic algorithms, neural networks, Pareto optimization, surrogate modelling 

I. INTRODUCTION 

ESEARCH and development of hybrid and electric vehicles 

(HEVs) has been promising in recent years: both traditional 

and new vehicle manufacturers aim to reduce carbon emissions 

and fuel consumption in the transportation industry over the 

next decades. Because of high torque-to-rotor volume density, 

rare earth permanent magnet motors have been the accepted 

choice so far for applications in the automotive sector. 

However, recent fluctuations in the price and supply of rare 

earth materials has led to vigorous research activities on motor 

topologies which use either less or no rare-earth magnet 

material while sustaining efficiency and performance 

requirements [1]. 

One possible candidate is the Synchronous Reluctance 

Machine (SynRM) which produces electromagnetic reluctance 

torque through variations in the rotor inductances due to flux 

barriers and carriers. Even though the geometric placement of 

flux barriers and carriers is crucial for selecting a high-

performance machine, exploring the motor’s design space 

through Finite-Element Analysis (FEA) for a global optimal can 

be both problematic and computationally expensive [2]. First, 

the design variables can be both discrete (e.g. number of rotor 

poles, number of stator slots, winding configurations, etc.) or 

continuous (e.g. flux barrier width and other geometric 

dimensions) leading to an NP-hard mixed-integer problem [3]. 

Next, the number of optimization objectives and the design 

space dimensions both impact the computational time needed 

to generate the Pareto front of optimal solutions. 

Therefore, this paper discusses an efficient algorithm for 

addressing the computational challenges in designing a SynRM 

through a case study with a single barrier and different possible 

rotor pole integer numbers. The global optimization problem 

was solved using non-linear regression analysis, also known as 

surrogate modelling, of a sampled design space consisting of 

discrete and continuous variables. As explained under Section 

II, this is the first application for developing computationally 

efficient design algorithms for SynRMs. 

II. PROPOSED ALGORITHM 

The proposed flowchart for the optimal Pareto designs of a 

single barrier SynRM rotor is illustrated in Fig. 1 (left). A 3-

phase 33-slot stator, with stator outer diameter ODs 325mm and 

motor stack length Lstk 275mm, was fixed for all rotor 

geometrical variations and has been employed from a direct-

drive application. Each subsection explains the flowchart steps 

using the SynRM case study: (A) Geometric Modeling, (B) 

Data Acquisition, (C) Surrogate Modelling and (D) Multi-

Objective Optimization. Once the Pareto front was obtained, 

the optimal design solutions were validated using FEA solves 

to compare the relative error differences. 

 

 

    
(a) Rotor Design (4.0, 4.0) 

    
(b) Rotor Design (24.0, 4.0) 

    
(c) Rotor Design (4.0, 24.0) 

    
(d) Rotor Design (10.7, 15.1) 

Fig. 1.  Left: Proposed Flowchart for Optimal SynRM Rotor Design,  

Right: Sample 8-Pole Rotor Designs for (Wc, Wb) in mm 
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A. Geometric Modelling 

For the fixed stator, the rotor flux carrier Wc and barrier Wb 

widths were modelled using the intersections of different 

circular radii from a fixed center. Each width ranges from a 

lower bound to a maximum limit Wlim for 4, 8 and 10 poles: this 

ensures that two adjacent poles do not intersect for each pole 

number np as constrained in (1). Hence, the design space 

consists of 3 dimensions. The flux barrier consists of air, and 

the stator and rotor core material used is M-19 29 Ga steel. For 

each np, the design space was sampled using a full factorial 

approach due to the low number of dimensions. Fig. 1 (right) 

illustrates four different rotor designs for the 8-pole case. 

𝑊𝑐 +𝑊𝑏 ≤ 𝑊𝑙𝑖𝑚         (1) 

B. Data Acquisition 

Since the chosen Lstk is relatively long with respect to ODs, 

2D FEA solves can estimate the motor’s performance while 

neglecting end effects. Stator windings operated at 150% rated 

current (350Arms), and the current advance angle was varied to 

obtain the Maximum-Torque-Per-Ampere point within ±1°. For 

every rotor design, a Transient 2D with Motion FEA was solved 

for 1/6th of a rotor revolution and 48 sample points to obtain a 

steady-state waveform graph of instantaneous torque T [4]. The 

two evaluated objectives for each motor design were average 

torque Tavg (2) and torque ripple Trip (3). 

𝑇𝑎𝑣𝑔(𝑊𝑐 ,𝑊𝑏) =
1

𝑁
∑ 𝑇𝑖
𝑁
𝑖=1     [N∙m]   (2) 

𝑇𝑟𝑖𝑝(𝑊𝑐 ,𝑊𝑏) =
|max(𝑇)−min(𝑇)|

𝑇𝑎𝑣𝑔(𝑊𝑐,𝑊𝑏)
  [%]    (3) 

C. Surrogate Modelling 

Upon FEA data acquisition, the entire dataset (np, Wc, Wb) 

was used to train two objective networks (Tavg, Trip) using the 

Bayesian Regularization Backpropagation Neural Network 

(BRNN) with a single hidden layer through [5]-[6]. This 

training function can handle the tradeoff of over-fitting and 

trend generalization. The training, validation, testing sets were 

randomly divided into 60%, 25%, 15% of the initial dataset. For 

training Tavg and Trip, the number of neurons was increased up 

to 20 until the convergence was met as presented in Table I. The 

8-pole Response Surface (RS) maps are shown in Fig. 2. 

 
TABLE I 

CORRELATION COEFFICIENT R2
 FOR THE TRAINED 8-POLE BRNN 

Objective Training Validation Testing 

Tavg: Average Torque 1.0000 0.9998 0.9999 

Trip: Torque Ripple 0.9969 0.9578 0.9684 

 

  

Fig. 2.  BRNN RS Maps of Tavg in Nm (left) and Trip in % (right) for 8 poles in 

(Wc,Wb) Plane: crosses correspond to sampled design space points 

D. Multi-Objective Optimization 

Lastly, a Pareto optimization using Genetic Algorithm (GA) 

was employed by maximizing Tavg while minimizing Trip. The 

initial population was evenly divided between 4, 8 and 10-pole 

datasets. The crossover function was chosen to handle both 

discrete and continuous variables. As in [7]-[8], the use of a 

surrogate model (BRNN) with GA can reduce the computation 

overhead in function evaluations. The final Pareto front in Fig. 

3 only consists of 8-pole solutions, since the RS map of Trip has 

smaller values than the 4- and 10-pole numbers. 

III. RESULT VALIDATION AND DISCUSSION 

All the final Pareto front solutions were validated using the 

FEA solves similar to Section II-B. The acceptable relative 

error percentage statistics for the Pareto front are presented on 

Fig. 3. Due to the tradeoffs between over-fitting and trend 

generalization of the input dataset, the high-frequency values in 

Trip’s dataset led to higher errors than in Tavg. This is also 

demonstrated through the differences in R2 values between the 

two objectives in Table I. In conclusion, this proposed 

algorithm can effectively address mixed-integer problems 

which commonly occur in motor design problems. The final 

design choices may then be passed on to the motor designer to 

effectively select a suitable solution from the Pareto front. 

 

 
Fig. 3.  Final Pareto Front and Relative Error Percentages with respect to 
Validated FEA Solutions: circled point corresponds to design (d) in Fig. 1 
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